欢迎来到零思考方案网网站!

初一数学一元一次方程知识点有哪些

2025-05-16
初一数学一元一次方程知识点有哪些

初一数学一元一次方程知识点有哪些 篇1

第六章生活中的数据

1.利用圆和扇形来表示总体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。

2.在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比。

3.扇形统计图能清楚地表示出各部分在总体中所占的百分比。

4.条形统计图能清楚地表示出每个项目的具体数目。

5.折线统计图能清楚地反映事物的变化情况。

初一数学一元一次方程知识点有哪些 篇2

第二章 有理数及其运算

1.有理数:整数正数、0、负数;无理数:分数正数、负数。

2.比0高的数,叫做正数,用符号+(读作:正)来表示。

3.比0低的数,叫做负数,用符号-(读作:负)来表示。

4.0既不是正数,也不是负数。

5.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

6.任何一个有理数都可以用数轴上的一个点来表示。

7.如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。0的相反数是0。

8.数轴上两个点表示的数,右边的总比左边的大。

9.正数大于0,负数小于0,正数大于负数。

10.在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

11.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

12.两个负数比较大小,绝对值大的反而小。

13.同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

14.减去一个数,等于加上这个数的相反数。

15.两数相乘,同号的正,异号得负,绝对值相乘。任何数与0相乘,积仍为0。

16.乘积为1的两个有理数互为倒数。

17.两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0数都得0。0不能作除数。

18.除以一个数等于乘以这个数的倒数。

19.求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数。

20.先算乘方,再算乘除,最后算加减;如果有括号,先算括号里的。

初一数学一元一次方程知识点有哪些 篇3

第三章一元一次方程

3.1从算式到方程

3.1.1一元一次方程

①方程:含有未知数的等式

②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。

③方程的解:使方程中等号左右两边相等的未知数的值

④求方程解的过程叫做解方程。

⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

3.1.2等式的性质

①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

3.2解一元一次方程(—)合并同类项与移项

把等式一边的某项变号后移到另一边,叫做移项。

3.3解一元一次方程(二)去括号与去分母

①一般步骤:

1.去分母。

2.去括号。

3.移项。

4.合并同类项。

5.系数化为一。

3.4实际问题与一元一次方程

利用方程不仅能求具体数值,而且可以进行推理判断。

初一数学一元一次方程知识点有哪些 篇4

第一章有理数

1.1正数与负数

①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

③0既不是正数也不是负数。0是正数和负数的分界,是的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等

1.2有理数

1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;

(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;

(2)数轴三要素:原点、正方向、单位长度;

(3)原点:在直线上任取一个点表示数0,这个点叫做原点;

(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)

4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3有理数的加减法

①有理数加法法则:

1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。加法的交换律和结合律。

②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4有理数的乘除法

①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同0相乘,都得0;

乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律。

②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;

两数相除,同号得正,异号得负,并把绝对值相除;

0除以任何一个不等于0的数,都得0。

1.5有理数的乘方

1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a<10。

第二章整式的加减

2.1整式

1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数.单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.

2、单项式的系数:是指单项式中的数字因数;

3、单项数的次数:是指单项式中所有字母的指数的和.

4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.

5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

6、单项式和多项式统称为整式。

2.2整式的加减

1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可同类项与系数大小、字母的排列顺序无关

3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

相关推荐