如果我们希望事情顺利进展,需要重点作好方案。在生活中我们常常需要做一些项目,一份优秀的方案是非常有必要的,方案要保证我们行动的可靠性,如何才能真正的写好方案呢?下面是小编精心为您整理的“【课件收藏】对数函数的概念教学反思范本合集”,但愿对您的学习工作带来帮助。

对数函数的概念教学反思【篇1】
本节课在备课组全体老师集体备课后,课堂教学设计完成得很好,课件的制作精美实用,学案的设计适当充分。各人再根据具体班级的情况去修改某些细节。
本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我还是采用了知识迁移及类比的学习方法进行本节课的设计。
回顾了指数函数的概念及性质以后,通过把指数式写成对数式的小练习,学生很轻松的完成把指数函数式写成对数函数式。进而引出课题。学生自主阅读课本70页内容后完成学案的第一部分,基本上能够理解对数函数的概念。并且很自觉的主动动手画图,观察图形得出性质,在性质的分析环节中,给予简单的提示(如,从图形观察特征,并用数学符号语言描述等),学生基本上能够运用类比指数函数的性质,说出对数函数的定义域、值域、单调性、过定点、函数值的变化情况等,性质的应用的设计我只采用了比较大小及求定义域两个例题及练习。学生完成得还不错,但在时间上还应多给予学生独立思考的时间。还需加强习题的变式能力。
对数函数的概念教学反思【篇2】
这节课讲的课题是对数函数及其性质。对数函数及其性质是人教版A版数学必修一的内容。
通过这节课的教学,我主要有以下三点收获:
授课的致用性:
大家往往固有的潜意识是数学枯燥无味,如果将来不搞科学研究,学之无用。本人要利用一切可以利用的数学课告诉大家,基础数学是提高国民基本科学常识的必备武器。那么,对数函数的学习则是对历史文物研究的基础知识。当下的国民,生活质量稳步提高,假日旅游已经成为常态,我们将来的国民不能再是只是游玩,而是懂道的欣赏。
碳14的对数公式
则是今天导课的重要兴趣吸引点。
信息技术的应用
多媒体教学已经成为常态教学手段,几何画板的动态展示已经为学生展示了直观的对数函数底数真数改变的图像变化。当然辅助教学手段是在学生的导学案上有习题和绘图两种手动跟进。
作业布置的探索性尝试
(1)上百度,知乎查阅考古年代的推断方法及碳14的相关应用.
(2)周末看一部考古相关的电影或纪录片。通过这种作业布置方式的尝试,让学生体会教改绝对不是一句空话,普通教师已经在行动。
当然,本节课还是有很多没有想到。也有三点。
1、内容的繁多性
总是认为本节课内容简单,要多讲一点,把可能的题型都要讲到,犯了大多数教龄多年的通病———经验式授课。导致本节课结束时有些许的时间紧张。
2、师生互动的简单重复
发挥学生的主观能动性一直是我们追求的,所以师生互动是很重要的一个展示环节。但是我们还只是简单的小组交流,板书展示。还是得开动脑筋,多些互动样式。
3、授课中的德育环节
其实本节课教学中我还是在导课过程,以及作业布置中体现出了德育的部分情节。但是还是远远不够,不能因为数学课的特殊性就可以忽略德育。润物细无声,潜移默化的影响才是为人师应该具备的素养。培养品德高尚的社会主义新人是目标,我辈仍需努力。
对数函数的概念教学反思【篇3】
《对数函数及其性质》是人教版数学必修一的内容。有人说“课堂教学是学术研究的实践活动,既像科学家进入科学实验室,又像艺术家登上艺术表演的舞台,教学是一种创造的艺术,一种遗憾的艺术。”回顾这节课有成功之处,也有遗憾之处。
成功之处:
1、通过盲生摸读理解函数图象,让学生更直观地归纳出对数函数的性质,对突破本节课的重、难点起了很大的帮助。
2、在引入新课时,根据我校学生的实际情况我重新设计了教学情境,从“细胞分裂”问题导入新课。由于问题具有开放性,又简单易行,学生表现得都很积极,课堂开始让学生动起来了。这样引入新课就自然了许多,学生接受起来也容易些。一堂成功的数学课,往往给人以自然、和谐、舒服的享受。所以设计恰当的情境引入新课是很重要的。
3、通过选取不同的底数a的对数图象,让学生类比研究指数函数图象及其性质分组探究对数函数的图象和性质。这个环节让学生合作学习,合作学习让学生感受到学习过程中的互助,还能让学生自己建构知识体系。不同数学内容之间的联系和类比,有助于学生了解与中学数学知识有关的扩展知识及内在的数学思想,促使学生认真思考其中的一些问题,加深对其理解。
遗憾之处:
1、在分组讨论如何画对数函数图象时,由于担心教学任务不能准确完成,我就直接找几位学生说出特殊点的坐标来列表,然后“描点、连线”一句话带过,整个过程太过精简,没有让学生真正的参与进来,对调动学生的积极性也没有起到好的作用,让学生失去一个展示自己成果的机会。
2、在讲完例题紧接着给出的练习题难易不当,这样学生做起来就有点吃力了,甚至有些学生觉得不知道该怎么做了,最后两道稍难的练习题应该留到下节课解决会更好些。
3、课堂小结只是带领学生复习了本节课所学的重点内容。如果能结合练习题提出问题,让学生思考解决这些问题的同时也为下节课的教学做准备,这样更有助于学生知识的扩展和延伸。
教育无止境,教育事业应该是一个常做常新的事业。为师无止境,教书生涯应该是一个不断常新不断前行的充满新奇的旅途。反思将让教师的生命变得五彩缤纷,反思将让我们的教育变成一支抑扬顿挫的交响乐。
对数函数的概念教学反思【篇4】
本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我采用了知识迁移及类比的学习方法进行本节课的设计。
首先,复习有关指数函数知识及简单运算,通过创设文物考古的情境,估算出出土文物或古遗址的年代,引入对数函数的概念。一方面体现了“数学源于现实,寓于现实,用于现实”,另一方面使学生产生强烈的探索欲望。然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。在性质的分析环节中,给予简单的提示(如,从图形观察特征,并用数学符号语言描述等),学生基本上能够运用类比指数函数的性质,说出对数函数的定义域、值域、单调性、过定点、函数值的变化情况等。性质的应用的设计我采用了求定义域及比较大小两个例题及练习,学生完成得还不错。最后用了几分钟总结本堂课所学知识点。
本堂课有两个亮点。第一,借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高了学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性,增强教学内容的表现形式,在贯彻教学的直观性原则上发挥其独特的优势。第二,由图形变化特征引导学生自己总结出对数函数的性质。使学生积极思维、主动获取知识,从而养成良好的学习方法。
并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。从课堂效果和学生的作业看来,我认为本堂课还存在着以下两个精品论文参考文献不足之处。第一,内容多,讲得太快,由于大部分学生数学基础较差,理解能力,运算能力,思维能力不高,课堂上应多给学生缓冲的时间。
比如,在例题讲解的环节,时间上还应多给予学生独立思考的时间。本堂课不应该一节课讲完,应分为两节课来讲,这样才能使课堂简洁。教学语言要更简练着实,教学中应充分挖掘教材内在的魅力,通过生动的比喻,夸张等方法打动学生。有句广告词说:“简约而不简单。”简简单单教数学,实实在在学数学是新课程,新时代对数学课堂教学本质回归的热切期盼。努力让课堂化繁为简,以小见大,以少胜多,充分发挥学生的主体性,促进师生和谐流畅的交流。第二,教学中手势动作不够丰富。如果一堂课教师只仅仅靠单一的语言交流而没有其他辅助的交流,学生听课就一定会象听讲座,听理论培训一样感觉,课堂的气氛就显得死板而毫无生气,更不能很好地调动学生的主观能动性。据有关资料显示:在信息传递中,一句话只表明了说话者要表达的内容的百分之七,声音则占所要表达内容的百分之三十五,而剩下的百分之五十多的内容却来自于说话者的姿态,动作,表情等。由此可见,教师课堂上手势动作的运用对于学生获取信息就非常重要。因而,合理的运用有效的手势动作,用于教师的辅助教学,一定会收到事半功倍的效果。既让教师的语言表达更加完美准确,又能易于学生理解并接受,达到意想不到的效果。
通过认真的反思,同时参考学生提出的意见,针对学生存在的共性问题,决定举出一些例题讲解,加强学生练习力度,从练习中发现问题,利用晚自习补充讲解,直到大部分学生理解掌握为止。
对数函数的概念教学反思【篇5】
在高中数学中,函数概念的教学是我们教师的一个难题。听了老师的讲座,给我带来了新的思路,也为解决这个难题提供了很好的指导。
虽然对函数概念本质理解并非一次就能实现,它有一个循序渐进、逐步完善,通过多角度多章节的学习,学生才能有一个较完整的深刻理解。但我们在学生刚接触函数概念时就应让学成从多角度去思考,去理解。
第一,从初高中数学中对函数定义的比较中,让学生能从初中的描述性概念把函数看成变量之间的依赖关系到高中用集合与对应的语言定义函数,从而达到函数概念的提升,从而更好地解决如y=3这样的常数函数概念的解释。
第二要用好课本,用课本教,而非教课本。充分利用好课本中函数概念的背景教学,通过三个实例:炮弹发射;大气层臭氧问题,恩格尔系数问题培养学生观察问题提出问题的探究能力,培养学生抽象概括逐步学会数学表达和交流。
第三充分发挥函数图像的集合直观作用,加强数形结合思想。数形结合,几何直观的数学思想方法对学生理解函数概念以及性质十分重要。通过让学生作图观察图像充分认识函数概念的整体性。我觉得这种方法在高中阶段是贯彻始终的。只有让学生充分学好图像认识好图像,能看懂图像,能解释图像,那么对解决花束问题将起着十分重要的作用。
zhe135.com小编推荐
月度推荐:对数函数的应用教学反思(700字)
由于学校的工作的严谨,我们会遇到撰写方案的情况,写好实用文对自己也是一种肯定,好的方案都有哪些内容?以下是小编为大家收集的“月度推荐:对数函数的应用教学反思(700字)”,仅供您在工作和学习中参考。
对数函数的应用教学反思【篇一】
本节课在备课组全体老师集体备课后,课堂教学设计完成得很好,课件的制作精美实用,学案的设计适当充分。各人再根据具体班级的情况去修改某些细节。
本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我还是采用了知识迁移及类比的学习方法进行本节课的设计。
回顾了指数函数的概念及性质以后,通过把指数式写成对数式的小练习,学生很轻松的完成把指数函数式写成对数函数式。进而引出课题。学生自主阅读课本70页内容后完成学案的第一部分,基本上能够理解对数函数的概念。并且很自觉的主动动手画图,观察图形得出性质,在性质的分析环节中,给予简单的提示(如,从图形观察特征,并用数学符号语言描述等),学生基本上能够运用类比指数函数的性质,说出对数函数的定义域、值域、单调性、过定点、函数值的变化情况等,性质的应用的设计我只采用了比较大小及求定义域两个例题及练习。学生完成得还不错,但在时间上还应多给予学生独立思考的时间。还需加强习题的变式能力。
对数函数的应用教学反思【篇二】
对数函数的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数以及对数函数的应用作好准备。
在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。但是从作业和课堂效果看来。同学们没有指数函数的性质和图象掌握的好。特反思如下:
1、学生对对数函数概念的理解及对数的运算不过关。学生在做这些运算时有时不能灵活运用公式例如换底公式,有时学生会想当然地自己“发明”公式。导致部分题目出现运算错误或不会。
2、在利用对数函数的单调性比较两个对数式的大小书写格式不规范,因此在解题的过程中就把真数和底数混乱了,这说明同学们用函数的观点解决问题的思想方法还没形成。
3、在解有关求定义域的问题时,学生不能很好的掌握底数a的取值范围以及真数必修大于0.
4、同学们对对数与指数的互化不是很熟练。导致有关指数与对数互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题时,更不会用对数函数的单调性去解决。
以上这些原因我通过认真的反思,同时参考学生提出的意见,决定讲两节习题课,针对学生存在的共性问题解决,找出他们的盲点,同时加强练习力度。从练习中发现问题,再通过系统讲解,直到绝大部分学生理解掌握为止。
对数函数的应用教学反思【篇三】
《对数函数及其性质》是人教版数学必修一的内容。有人说“课堂教学是学术研究的实践活动,既像科学家进入科学实验室,又像艺术家登上艺术表演的舞台,教学是一种创造的艺术,一种遗憾的艺术。”回顾这节课有成功之处,也有遗憾之处。
成功之处:
1、通过盲生摸读理解函数图象,让学生更直观地归纳出对数函数的性质,对突破本节课的重、难点起了很大的帮助。
2、在引入新课时,根据我校学生的实际情况我重新设计了教学情境,从“细胞分裂”问题导入新课。由于问题具有开放性,又简单易行,学生表现得都很积极,课堂开始让学生动起来了。这样引入新课就自然了许多,学生接受起来也容易些。一堂成功的数学课,往往给人以自然、和谐、舒服的享受。所以设计恰当的情境引入新课是很重要的。
3、通过选取不同的底数a的对数图象,让学生类比研究指数函数图象及其性质分组探究对数函数的图象和性质。这个环节让学生合作学习,合作学习让学生感受到学习过程中的互助,还能让学生自己建构知识体系。不同数学内容之间的联系和类比,有助于学生了解与中学数学知识有关的扩展知识及内在的数学思想,促使学生认真思考其中的一些问题,加深对其理解。
遗憾之处:
1、在分组讨论如何画对数函数图象时,由于担心教学任务不能准确完成,我就直接找几位学生说出特殊点的坐标来列表,然后“描点、连线”一句话带过,整个过程太过精简,没有让学生真正的参与进来,对调动学生的积极性也没有起到好的作用,让学生失去一个展示自己成果的机会。
2、在讲完例题紧接着给出的练习题难易不当,这样学生做起来就有点吃力了,甚至有些学生觉得不知道该怎么做了,最后两道稍难的练习题应该留到下节课解决会更好些。
3、课堂小结只是带领学生复习了本节课所学的重点内容。如果能结合练习题提出问题,让学生思考解决这些问题的同时也为下节课的教学做准备,这样更有助于学生知识的扩展和延伸。
教育无止境,教育事业应该是一个常做常新的事业。为师无止境,教书生涯应该是一个不断常新不断前行的充满新奇的旅途。反思将让教师的生命变得五彩缤纷,反思将让我们的教育变成一支抑扬顿挫的交响乐。
对数函数的应用教学反思【篇四】
1、总体设计说明
幂函数是函数教学的最后一个函数,在通过学习了指数函数与对数函数之后,同学们已经基本掌握了研究函数的一般方法,因此幂函数是交给学生自主研究的一个重要的契机。函数的学习,目的在于通过对几个基本初等函数的研究让学生掌握研究一个陌生函数的方法。
基于以上认识,确定本节课的教学目标如下
(1)引导学生从具体实例中概括典型特征,形成幂函数的概念,并用数学符号表示。
(2)运用数学结合的思想,让学生经历从特殊到一般,具体到抽象的研究过程,运动研究函数的一般方法,掌握幂函数的图像特征与性质。
(3)能够利用幂函数的性质比较两个数的大小
教学重点与难点如下
教学重点:通过让学生经历几个特殊幂函数的研究过程,抽象概括幂函数的图像与性质
教学难点:根据具体的幂函数的图像与性质归纳出一般幂函数的图像与性质
本节课的教学采用开放式的自主学习方式,通过引导学生对几个具体的幂函数的研究让学生归纳出一般幂函数的图像与性质。
本节课的教学过程分为三个阶段:一是概念建构;二是实验探究;三是性质应用
2、教学过程剖析
2.1创设情境 建构概念
问题1 (1)正方形的边长a与面积S之间是函数关系吗?
(2)正方体的'边长a与体积V之间是函数关系吗?
【设计意图】 从实际的问题引入,让学生感受幂函数与实际的联系,初步感受幂函数
学生找到两个变量之间的函数关系,并给出函数的解析式: 和 。
师:我们把形如 的函数称为幂函数。
直接给出定义,这里其实可以让学生再举几个类似的函数的例子,通过多个实例再让学生抽象幂函数的定义会更好。
师:我们研究问题一般是从特殊到一般,具体到抽象的一个过程,因此我们可以先研究几个特殊的幂函数,比如最特殊 ,图像长什么样子?
生:是一条直线。
师:你确定是一条直线吗?
生:是一条直线去掉一个点 师:为什么?
生:定义域中x不能取到0。
师:我们研究函数一般先看函数的定义域。
师:我们可以先研究 的情况,你打算研究 为哪些值?
【设计意图】引导学生思考如何选取 的研究起来比较方便,一般学生会选择 为1,2,3来进行研究,实际操作中因为笔者的课堂利用了图形计算器,也可以让学生多取一些值,借助于图形计算器让学生绘制更多幂函数的图像,从而概括得到一般幂函数的图像与性质,这样学生的学习自主性更强,教师可以减少一些介入。
对数函数的应用教学反思【篇五】
一、教学目标
【知识与技能】
掌握对数函数的概念,会画对数函数的图象,根据对数函数的图象理解对数函数的性质。
【过程与方法】
通过对数函数性质的探究过程,体会从特殊到一般的方法以及数形结合的数学思想方法。
【情感、态度价值观】
通过本节的学习,体验数学的严谨性,养成细心观察、认真分析、严谨思考的良好思维习惯。
二、教学重难点
【教学重点】
对数函数的概念、图象和性质。
【教学难点】
通过对数函数的图象归纳对数函数的性质。
三、教学过程
(一)导入新课
[2025课件] 函数教学反思(一篇)
平时做事无计划,急时做事无头绪。针对我们给自己制定的目标,我们必须从多个角度考虑制定方案,方案是计划中内容最为复杂的一种,写好方案应当从哪方面入手?为此,小编从网络上为大家精心整理了《[2025课件] 函数教学反思(一篇)》,供您参考,希望能够帮助到大家。
立足于二次函数在初中数学函数教学中的地位,根据学生对二次函数的学习及掌握的情况,从梳理知识点出发采用以习题带知识点的形式,我精心准备了《二次函数》的第一节复习课,教学重点为二次函数的图象性质及应用。
最初,“抛物线的开口方向、对称轴、顶点坐标、增减性”这一相关性质复习设计中安排了3个训练题目,其中第(2)小题侧重在抛物线的对称性与增减性,集体备课后我在复习侧重方向上作了调整:加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练,另外还预想借图象识别2a与b的关系将是本节课的一个难点。本节通过建立函数体系回忆了二次函数的定义,其图象与性质及与一次、反比例函数图象的综合应用,相继进行,但此环节中“2a与b的关系”学生没有提到,迫于突破此难点,我让学生观察课例图象,并进一步引导观察对称轴的具体位置后,仅有十几个学生准确理解、掌握,于是我进一步的分析“2a与b的关系”由对称轴的具体位置决定,并说明由a>0与b>0能推导出2a+b>0的方法仅适于此题,但效果不尽人意,仍有一部分学生应用此法解决相关问题。如此导致处理二、2、(2)题时间紧张,使得重点不凸现。将第(3)题留为课后作业,来了个将错就错,为下一节课复习“二次函数与二元一次方程”的关系巧作铺垫。
通过本节课的备课与教学,我受益匪浅,感受颇多:
1.每一个学生都有一定的知识体验和生活积累,每个学生都会有各自的思维方式和解决问题的策略.这一堂课我让学生成为数学学习的主人,自己充当数学学习的组织者,取得了意想不到的效果,学生不但能用一般式,顶点式解决问题,还能深层挖掘,巧妙地用两根式解决问题,可见学生的潜力无穷.
2.本课遵循尊重学生,相信学生,依学生的“主体”教学思想,运用助思,助学,助练的启发式教学方法,启动了师生交流的“匣门”,使教学过程真正成为了师生间的双向活动
3、在如何备复习课,准确把握一个单元及一节课的重点及突破难点方面有了很大提高;在巧妙驾驭课堂方面有了很大进步;在如何与他人相处方面有了更好的认识,踏踏实实地做人。
总之,在实践中获得灵感,在交流中撞出智慧,在反思中调整思路,在坚持中取得进步。
[课件范本] 《繁星》教学反思
平时做事无计划,急时做事无头绪。在开始一项建设之前,我们在项目开始之前应该有一份完整的方案,每一个方案的实施都有它的意义,对于方案的撰写你是否毫无头绪呢?以下是小编为大家精心整理的“[课件范本] 《繁星》教学反思”,供您参考,希望能够帮助到大家。
成功之处:
1、注意朗读的教学。
通过有梯度、有层次地探究式学习,读出节奏,感受现代诗的音乐性;读出想象,体会现代诗的艺术性;读出情感,感受现代诗的人文性,在反复朗读中发现现代诗的特点。
2、注意读写训练。
学习现代诗的特点,将习得的特点落实到笔端仿写现代诗,鼓励孩子大胆创作,激发对现代诗的喜爱之情,通过综合性学习摘录积累,分享交流将现代诗,融入到生活中。
不足之处:
面对学生出色的表现,不能及时地找出更为合适的评价用语,有时候,明明知道学生表现很好,但却急于找不到合适的话语进行评价。那些用惯了的“你真棒”"好极了”等,在我看来一遍足以,如果反复使用则会变得枯燥无味,失去了表扬的意义。
在今后的教学中,我要从指导者的角度出发,更加注重培养学生自主探究的能力。认真学习课堂评价语言,争取恰如其分,及时到位地评价学生。
[课件范本] 《坐井观天》教学反思模板
综观成大事的人,他们对于重要事情的方案设计非常重视。在开始一项建设之前,我们或多或少都应该准备好一份方案,方案是计划中内容最为复杂的一种,对于方案的撰写你是否毫无头绪呢?下面是小编精心为您整理的“[课件范本] 《坐井观天》教学反思模板”,但愿对您的学习工作带来帮助。
本课教学伊始,我创设情境:多媒体出示书上第二幅图,问生:图上有哪两种动物?根据学生的回答设置悬念,青蛙和小鸟之间发生了一件什么事呢?
这节课我们学习13课《坐井观天》。这样,激发了学生的学习兴趣。接着,让学生根据课题质疑,学生从多角度提出了自己想知道的问题:坐井观天是什么意思?谁坐井观天?它们看到的天是什么样的?……这样,培养了学生创新质疑的能力。在学习生字时,我让学生小组合作自学生字,小组合作没有流于形式,达到了合作的目的,然后再全班交流,这突出了学生的主体地位,真正做到把课堂还给学生,把主动权还给学生,能够让学生自主探索,尝试学习,讨论交流时,我让学生用自己喜欢的方法记忆字形,学生学习的兴趣很浓,记忆字形的方法很多:计部件、去部件、换部件、数比画、先计部件再数笔画、比较法……接着又让学生用自己喜欢的词说一句话,学生表达能力很强,句子说得很好,积极性也很高,例如:长江沿岸景色秀丽,真让人流连往返。我在上学的路上口渴了,想找点水喝。有一只可爱的小鸟落在我家的井沿上……
[课件必备]我和我的老师教学反思范本合集(5篇)
万事提前做好周全的准备,是很有必要的。当我们打算开展一个项目时,我们必须从多个角度考虑制定方案,方案从目的来说需具有很强的可操作性的计划,什么样的方案比较高质量?为此,小编从网络上为大家精心整理了《[课件必备]我和我的老师教学反思范本合集(5篇)》,希望能为您提供更多的参考。
我和我的老师教学反思(篇一)
10月17日上午,六年七班的教室里,正在进行学校耕耘杯的`作课活动,我讲的题目是《我的老师》。这是一节讲读课,以培养学生的阅读能力为主要目的,在阅读中充分发挥学生的主体作用,让学生从读中悟,提高能力素养。
本文是一篇回忆性散文。作者回忆了儿童时代在老师身边的七件小事,抒发了对老师的热爱、感激之情,表现了蔡老师温柔、热爱学生、热爱教育事业的美好品德。文章以一个儿童的眼睛、儿童的心灵,去观察老师,去感受老师,跳出一般赞颂老师的窠臼,使文章情意真挚,极富感染力。
良好达到开端是成功的一半,所以,导入新课的开场白非常关键。它有利用营造适宜的课堂氛围,集中学生的注意力,使其对学习内容产生浓厚的兴趣,使新旧知识自然衔接。设计导语如下:“平凡小事见真情”是我们时常挂在嘴边的一句话,也恰恰是这句话在现代作家魏巍的回忆性散文《我的老师》中妙笔生花。本节课咱们师生共同体会“平凡小事”见“真情”。
《我的老师》共记叙了七件事,前五件事写得概括,后两件事写得具体。前面写蔡老师的五件事,从面上概括体现老师爱学生,学生爱老师的中心,这五件事是依据作者感情步步加深的顺序排列的,感情的分量一件比一件重,对“我”的影响一件比一件深,由表及里,层层递进,逐渐把文章推向高潮。后面写孩子爱老师的两件事,披露了孩子内心里对老师的深情,也烘托和反衬了蔡老师对学生的爱。第六件事详写,对孩子来说,不知父亲死活,又遭同学奚落,这是难以承受的打击。老师的支持、鼓励,使“我”感受到温暖,对老师的感情也上升到新的高度:“在一个孩子的眼睛里,他的老师是多么慈爱,多么公平,多么伟大的人啊。”而详写第七件事“梦中寻师”,使孩子对老师的爱达到更高的境界。这七件小事,从课内写到课外,从校内写到校外,从平时写到假期,从学习写到生活,师生感情步步加深,所选事例丰富多彩,而内容绝无雷同之感。而在儿童时代,那些零碎的、具体的、直观的材料往往会让儿童们终身难忘。本文就选取了这样的符合儿童记忆特点的材料构文,材料选择很是典型。
作者把自己对蔡老师的浓浓深情蕴含在叙述事情过程中的平平实实的字里行间,通过传神的细节描写,将最动人的一瞬清晰地展现在读者面前,使人物形象丰满,情感细腻深刻。如“假打真爱”的场面,“从来不”“仅仅有一次”“好像要”“轻轻地敲”这些词语说明蔡老师即使在生气的时候也并没有真打我们的意思,这仅有的一次假装生气,写出了老师的“严”与“爱”,也表明了蔡老师最理解小孩子怕打的心理,表现了蔡老师的温柔、热情、深爱学生的思想感情;“一迎”写出“我”的本能与调皮;“大伙笑了,她也笑了”中两个“笑”字表明了十分亲密、融洽的师生关系。再如假期惜别时的场面,“我默默地站在她的身边”一句中“默默”两字写出孩子与自己喜爱的老师依依惜别的深情,这是孩子送别的动人场面,这是孩子表达依恋的方式,没有话语只是默默观察,只希望能在老师身边多呆一会儿,只希望能多看老师一眼,真是此时无声胜有声,无声的动作,静态的描写,浓浓的情意胜过千言万语。还有“梦中寻师”更表明了学生依恋老师的程度,只有梦境才能满足“我”的心愿。这心理、这感情、这思念是难以用语言表达的,正像作者说的:“一个孩子的纯真的心,就是那些在热恋中的人们也难比啊!”这些传神、细腻的描写,无一不让读者真切地感受到浓浓的师生之情。
这节课的重点是欣赏文章中的细节,让学生通过自己寻找细节描写来深入体会文章中蕴涵的深情,基本完成。教师在学生学习过程中是引导者、参与者,努力在作品与学生心灵之间架设起一座沟通的桥梁。但是老问题,一、很难调动全部的学生参与到思考中来,很多学生的惰性,是一种懒与思考的惰性!二、学生无法将自己感受到的东西顺利的转化成语言表达出来。或者体会不深,表达不清。能基本达到要求只有20多个学生而已。还有一半的学生依旧是听甚至无法参与到课堂中来。
课堂时间把握不好,由于前面的体会语言细节环节不好,后面时间也不够了,如:让学生找出蔡老师做的哪些事反映蔡老师的哪些性格特点耽误时间过长。结果后面的一个给以前老师写明信片的拓展迁移训练环节感情调动不够。看来还是要在课堂气氛节奏的调控上多下些功夫。不过,和刚接手这个班的时候相比,学生毕竟已经有了体会探究独立思考习惯,无论是好还是坏。其实课堂中自己最兴奋的时候是学生提出了许多好的句子和词语,是自己也没有想到的,和学生共同临时探讨是最快乐。这个时候才有点教学相长的意思。
我和我的老师教学反思(篇二)
经过两个多星期的反复准备,终于在这周四结束了“战役”。
公开课的内容定为《我的老师》的第二课时,这是一篇传统篇目,要讲出新意,应该说是仍比较有难度。传统讲法是通过讲详略,来体现师爱生、生爱师之情。而此次教学设计则另辟蹊径,从正面描写和侧面描写的角度来分析文章刻画人物、表达情感的方法。
经过了前两次的接触,对特级教师付华老师已不再陌生。她总是在轻松活泼的氛围中对我们的教学进行深入浅出的点评。
付华老师指出了我需要改进的不足之处并提出了很多我在备课过程中未曾考虑到的问题。对一些有争议性的问题也给出了合理的解释,使我受益良多。比如,在教学环节的设置上,仍然有生硬之感。在概括事件的过程中,为什么单单跳过第八段不讲,而直接讲第九段?学生们可能会有疑问。而老师如果给学生交代一下,(“第八段,写事没写事?写事吧,好像又太小了,没写事吧,但又确实是件事)进而也可以提出细节描写,做到讲课过程中的不露痕迹。
付老师很赞赏“水到渠成”式的教学方法。在讲到概括事件的时候,就可以提出详写、略写的问题。详细描写的都是令“我”印象最深刻的事,自己的感受最深,所以写得详细,而之前都是写得老师与“我们”之间发生的事,所以略写。付老师还对我课堂中对学生回答处理不好的不好的部分,做了补充。比如“迷迷糊糊”、“模模糊糊”都是叠词,叠词能表现出字词原来的意思,但表达效果上要弱一点。学生在概括“梦中寻师”是时候,说的是“梦游”去寻师。“梦游”这个词实际上是不恰当的。“梦游”可以说是一种病态,概括成“梦中”、“梦里”才更恰当。有学生提到“我什么时候才能再见一见我的蔡老师呢?”是设问句。设问是自问自答的形式。而“什么时候才能再见一见我的蔡老师呢?”虽有问号,其实并不是真的在疑问,而是介于疑问和反问之间,表达对老师是思念之前。
付老师有数十年的教学经验,对文本有着深入的分析,给我们提出了更加细致的问题。比如“席子铺在当屋,燃着蚊香”写出了什么?在这种情况下,他是能睡熟的,然而却醒了要去找老师,更加说明了“日有所思,夜有所梦”。文中讲老师写信劝慰我,说我是“心清如水”的学生。这是对学生品质的赞美,学生认可老师的这句话,并记忆犹新,说明老师对学生的观察细致。这些都是我尚未注意到的,在付老师的点拨下,顿时觉得明朗了许多。
此外,组里的其他老师也提出了非常宝贵的意见,从备课之初,刘玉舒老师与王惠琴老师就一直尽心尽力地为我指导,指出我试讲中的种种不足,并提出改进的建议,公开课的顺利进行,离不开两位老师的帮助。此外,马老师指出这堂课重点、难点仍是不太突出;黄老师认为正侧面描写的部分仍有争议。韩老师提出了再让学生练习一下正侧面描写,以巩固正侧面描写的知识。
我非常感谢语文组老师们这么真诚无私地帮助我、指导我。在听其他老师课的过程中,我深深佩服老师们对于文章内容把握的深度与对学生情况了解的准确,并深感自己在这两方面做得十分不足。在今后的工作和学习中,自己一定会多学习、多思考、多请教,争取在教学上取得更大的进步。
我和我的老师教学反思(篇三)
《课标》提出:培养独立阅读的能力,注重情感体验,有较丰富的积累,形成良好的语感。为了让学生从课外感知素材和课文实际内容相互渗透学习方式,拓宽学生的学习空间,我指导阅读“我的老师”的教学过程的感受是:
首先要求学生在上课前收集“我心目中最敬爱的老师”的`具体典型材料,并且写好简短的发言稿。在课前五分钟,请两三位同学自由发言,这样无形中给学生之间得到初步启发:谁是我们最敬爱的老师,我们应该怎样向老师学习?
其次,提供同样题目,魏巍写的“我的老师”的阅读资料。这篇文章是回忆、依恋、思念“我的蔡老师”。作者记叙儿童时代生活在老师身边的几件小事,记叙中融汇了儿童自然而纯真的感受,使得这些情感与平常小事十分生动感人。学生读了这篇真实故事,感受到作家魏巍对自己老师的爱戴、思念,表达了真诚的情感,从中得到情感的熏陶。
其三,要求学生低声朗读海伦·凯勒写的“我的老师”。指导学生在阅读中理解文章内容,认识结构的特点。让学生体会到,文章的作者是“一个命运非常不幸而又十分了不起的人物。带领她走出不幸的便是她的莎利文老师—一个改变她命运的人。”
其四,采取讨论式教学,让学生领悟合作学习,共同解决难题,达到共同提高。通过不同国别的两位作家写的“我的老师”的比较阅读,由学生分组讨论,拟出发言提纲。讨论题目是:
(1)两位作家写的“我的老师”,写作形式、表现手法有何异同?
(2)海伦的文章为什么要花这么多笔墨写自己呢?
(3)莎利文老师教了海伦什么?莎利文老师好在什么地方?讨论题目公布之后,有各组因人而异,自由选择题目,不拘一格,灵活掌握。然后由分散到集中,选择三两个组推荐代表发言,使全班同学得到共识。
其五,俗话说的好,“三个臭皮匠,胜过诸葛亮”。经过认真讨论,反复比较分析,思维较好的学生认为魏巍写的“我的老师”,叙事内容比较接近学生的学习生活习惯,通俗易懂;而海伦写的“我的老师”文学性比较强,高雅难懂。因为海伦的文章的题目是“我的老师”,顾名思义应该是写老师为主,可是文章并不是如此。文章既写老师,也写自己,而且写自己的笔墨还比写老师还多。文章写自己对生活的态度,写自己识字时的美好感受,写来到田野中的快乐,……这一切都是从侧面写老师对自己的影响,写老师的可爱和可敬。正是这种从侧面表现人物优秀品德的写法,使学生在阅读中感到困惑,一时难以理解。还有,作者海伦和她老师的关系,是一般人难以想象的;作者对自己心中的感情没有像魏巍那样进行直接的抒发和渲染,而是隐藏在看似乎实的叙述描写之中,让读者在读着具体的事件时感受字里行间流动的深情。学生要深刻的理解作者的感情,与作者的感情同行,一时难以做到,只有利用课余时间,反复细读,才能深刻地品尝作者的情感。因此,我深深地感到,在指导阅读教学中必须合作学习、共同探究,逐步加深理解文章,内涵,以及体验文章情感。
以上是我指导学生阅读海伦写的“我的老师”之后的几点体会,盼予指正。
我和我的老师教学反思(篇四)
《课标》提出:培养独立阅读的能力,注重情感体验,有较丰富的积累,形成良好的语感。为了让学生从课外感知素材和课文实际内容相互渗透学习方式,拓宽学生的学习空间,我指导阅读“我的老师”的教学过程的感受是:
首先要求学生在上课前收集“我心目中最敬爱的老师”的具体典型材料,并且写好简短的发言稿。在课前五分钟,请两三位同学自由发言,这样无形中给学生之间得到初步启发:谁是我们最敬爱的老师,我们应该怎样向老师学习?
其次,提供同样题目,魏巍写的“我的老师”的阅读资料。这篇文章是回忆、依恋、思念“我的蔡老师”。作者记叙儿童时代生活在老师身边的几件小事,记叙中融汇了儿童自然而纯真的感受,使得这些情感与平常小事十分生动感人。学生读了这篇真实故事,感受到作家魏巍对自己老师的爱戴、思念,表达了真诚的情感,从中得到情感的熏陶。
其三,要求学生低声朗读海伦·凯勒写的“我的老师”。指导学生在阅读中理解文章内容,认识结构的特点。让学生体会到,文章的作者是“一个命运非常不幸而又十分了不起的人物。带领她走出不幸的便是她的莎利文老师—一个改变她命运的人。”
其四,采取讨论式教学,让学生领悟合作学习,共同解决难题,达到共同提高。通过不同国别的两位作家写的“我的老师”的比较阅读,由学生分组讨论,拟出发言提纲。讨论题目是:
(1)两位作家写的“我的老师”,写作形式、表现手法有何异同?
(2)海伦的文章为什么要花这么多笔墨写自己呢?
(3)莎利文老师教了海伦什么?莎利文老师好在什么地方?讨论题目公布之后,有各组因人而异,自由选择题目,不拘一格,灵活掌握。然后由分散到集中,选择三两个组推荐代表发言,使全班同学得到共识。
其五,俗话说的好,“三个臭皮匠,胜过诸葛亮”。经过认真讨论,反复比较分析,思维较好的学生认为魏巍写的“我的老师”,叙事内容比较接近学生的学习生活习惯,通俗易懂;而海伦写的“我的老师”文学性比较强,高雅难懂。因为海伦的文章的题目是“我的老师”,顾名思义应该是写老师为主,可是文章并不是如此。文章既写老师,也写自己,而且写自己的笔墨还比写老师还多。文章写自己对生活的态度,写自己识字时的美好感受,写来到田野中的快乐,……这一切都是从侧面写老师对自己的影响,写老师的可爱和可敬。正是这种从侧面表现人物优秀品德的写法,使学生在阅读中感到困惑,一时难以理解。还有,作者海伦和她老师的关系,是一般人难以想象的;作者对自己心中的感情没有像魏巍那样进行直接的抒发和渲染,而是隐藏在看似乎实的叙述描写之中,让读者在读着具体的事件时感受字里行间流动的深情。学生要深刻的理解作者的感情,与作者的感情同行,一时难以做到,只有利用课余时间,反复细读,才能深刻地品尝作者的情感。因此,我深深地感到,在指导阅读教学中必须合作学习、共同探究,逐步加深理解文章,内涵,以及体验文章情感。
以上是我指导学生阅读海伦写的“我的老师”之后的几点体会,盼予指正。
我和我的老师教学反思(篇五)
《课标》指出:“阅读是学生的个性化行为,应引导学生钻研文本,在主动积极的思维和情感活动中,加深理解和体验,有所感悟和思考,受到情感熏陶,获得思想启迪,享受审美乐趣。”
无论思考讨论什么问题,都要立足于自渎,引起思考。在《我最好的老师》教学中,我以读为本,先让学生初读课文,整体感知课文内容,思考:“‘我’最好的老师是一位怎样的老师。”然后抓住“他是一个很有个性的人,教学方法独特,常常有出人意料的举动。”这句话引导学生自主品读,咀嚼课文的重点词句,力图带领孩子们层层剥笋似地深入体会从一堂课到每堂课,从课堂到课外,怀特森先生用独特的教学方法培养了学生的独立思考,独立判断的能力和科学的怀疑精神,影响了孩子所有的学习方式和人生导向,从而体会怀特森先生确实是最好的老师。
文路和教路是为学路服务的,回顾本堂课的教学,考虑到这篇课文是一篇略读课文,针对本课的教学重难点,我力求削枝去叶,理清课文的主线,凸显主体,从而提高教学效率。在整体感知课文之后,我开始设计了这样一个问题:“从哪些地方可以看出怀特森先生是一个教学方法独特,很有个性的人。”交流时原本认为学生可以抓住重点语句品读,没想到,学生几乎把整篇课文都说到了,交流到最后,就显得有点繁琐,从而影响到整堂课的教学效果。
反思自己的教学,主要问题在于没找准问题的切入点,如果问题这样提:“关于‘猫猬兽’这堂课,怀特森先生的哪些做法体现了他是一
个教学方法独特,很有个性的人。”那情况就大不一样。
语文课不要把教学环节设计得过于复杂,要找准问题的切入点,才能把复杂的内容变得简单明了,使冗长拖沓的教学过程变得便捷。
反函数课件
反函数课件 篇1
一、教材分析
本节是《反比例函数》的小结与复习课。函数本身是数学学习中的重要内容,而反比例函数又是基础函数。反比例函数是继一次函数学习之后又一类新的函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。 通过本节课对本章知识的复习,让学生进一步体会反比例函数的意义,了解反比例函数的图象,能根据图象和解析式进一步探索并理解反比例函数的性质,能用反比例函数解决某些简单的实际问题。因此,本节课的学习是学生对函数的概念、图象与性质一个再知和整合的过程。
二、 教学目标分析
根据课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:
1、知识与能力目标:
(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。
(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。
2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。
3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。
三、教学重点难点分析
由于本节课的学习是学生对函数的概念、图象与性质一个再知和整合的过程。可以帮助学生形成解决问题的一些基本策略,提高分析问题,解决问题的能力和发展他们的创新精神。所以我确定本节课的教学重点是进一步掌握反比例函数的概念、图像、性质并正确运用。教学难点是反比例函数性质的灵活运用。数形结合思想的应用。
四、教学方法分析
根据教材特点及学生的年龄特点、心理特征和认知水平,我采用合作交流、集体探究的方法启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
五、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙
六、教学设计的基本思路
(一)知识梳理:主要说明本章的内容由反比例函数的意义;反比例函数的图象与性质;利用反比例函数解决实际问题三大块组成。
(二)合作交流,解读探究
1、复习反比例函数概念及其等价形式。并设计了相应的配套练习:判断反比例函数并指出其中的K值;结合物理知识写函数关系式,体会数学知识来源于生活,考查学生对反比例函数系数及自变量的指数的掌握情况。
2、复习反比例函数的图象与性质,并用来解决问题。也设计了相应的配套练习:根据K值确定反比例函数所在象限及其一支(X>0)的增减性,根据函数关系式和给定自变量(函数值)求函数值(自变量的值);由图像性质和K值的关系确定m的取值范围;用待定系数法求反比例函数解析式;根据函数增减性及所给函数图像上点的横坐标判断个点函数值的大小,难度较大,学生不易掌握。
3、综合运用:给出一次函数的图像y=ax+b与反比例函数y= 相交的示意图及交点M(2,m)、N(—1,—4)两点。求反比例函数和一次函数的解析式并根据图像写出反比例函数的值大于一次函数的值的X 的取值范围。此类题目在中考中常见。是一次函数和反比例函数的综合应用,主要用数形结合思想和待定系数法求解,可以提高学生的观察、分析、综合应用及合情推理能力。
(三)随堂练习:贯穿于整个课堂教学中,具体内容见课件。
(四)归纳总结:
由学生总结本节课所学习的主要内容:
1、反比例函数的意义;
2、反比例函数的图像与性质;3数形结合思想
让学生通过知识性内容的小结,把课堂所学的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
(五)布置作业
(六)课后反思:
1、在本课时的师生互动过程中,积极创造条件和机会,让学生发表见解,使他们有成功的学习体验,激发他们的学习兴趣,增强他们的自信心,提高他们学习的主动性。
2、尽量体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的能力。
3、即时训练——巩固新知。为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,把配套练习中的习题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。
4。存在的问题:学生配合不够积极,积极回答问题的学生少,学生的积极性没有充分调动起来;对中下学生关注的太少;教师说的多,学生没有充分的时间讨论交流;课堂教学内容稍多,在规定时间内没有完成教学任务。
反函数课件 篇2
一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= (y). 若对于y在C中的任何一个值,通过x= (y),x在A中都有唯一的值和它对应,那么,x= (y)就表示y是自变量,x是自变量y的函数,这样的函数x= (y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f^-1(y). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.
说明:⑴在函数x=f^-1(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f^-1(y)中的字母x,y,把它改写成y=f^-1(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式.
⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f^-1(x),那么函数y=f^-1(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f^-1(x)互为反函数.
⑶从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f^-1(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f^-1(x)的值域;函数y=f(x)的值域正好是它的反函数y=f^-1(x)的定义域(如下表):
函数y=f(x)
反函数y=f^-1(x)
定义域
A C
值 域
C A
⑷上述定义用“逆”映射概念可叙述为:
若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数x=f^-1(x)就叫做函数y=f(x)的反函数. 反函数x=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.
开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f^-1(t)=t/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f^-1(x)=x/2-3.
有时是反函数需要进行分类讨论,如:f(x)=X+1/X,需将X进行分类讨论:在X大于0时的情况,X小于0的情况,多是要注意的。一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a
反函数课件 篇3
一、说教材
1、内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。
2、学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。
二、说教学目标
根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:
1、从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
三、说教法
本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。
四、说学法
我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。
好学教育:
因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。
五、说教学过程
(一)创设情境,发现新知
首先提出问题
问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?
【设计意图及教法说明】
在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。
问题2:我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V。
(1)你能用含有R的代数式表示I吗?
(2)利用写出的关系式完成下表。
R/Ω 20 40 60 80 100
I/A
当R越来越大时,I怎样变化?当R越来越小呢?
(3)变量I是R的函数吗?为什么?
【设计意图及教法说明】
因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。
问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的?
【设计意图及教法说明】
学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。
问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?
【设计意图及教法说明】
好学教育:
问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。
(二)合作探究,获得新知
1、出示问题
想一想,你还能举出类似的例子吗?
【设计意图及教法说明】
这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。
2、启发学生建构新知
反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。
反比例函数自变量不能为0!
反比例函数的一般形式:y= k/x(k为常数,k≠0)
反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)
【设计意图及教法说明】
这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。
(三)反馈练习,应用新知
根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。
1、基础过关
(1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少?
①y=x/5
②y=6x—1
③y=—3x—2
④xy=2
【设计意图及教法说明】
此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。
好学教育:
(2)做一做
①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?
②某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积x公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?
③y是x的反比例函数,下表给出了x和y的一些值:
a、写出这个反比例函数的表达式;
b、根据函数表达式完成下表。
表略。
【设计意图及教法说明】
通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的能力,也达到了学以致用的目的。
2、能力拓展
(1)你能举个反比例函数的实例吗?与同学进行交流。
(2)y=5xm是反比例函数,求m的值。
【设计意图及教法说明】
(四)归纳总结,反思提高
通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。
(如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)
【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。
(五)推荐作业,分层落实
必做题:课本第134页习题1、2题。
选做题:已知y与2x成反比例,且当x=2时,y=—1,求:
(1)y与x的函数关系式。
(2)当x=4时,y的值。
(3)当y=4时,x的值。
好学教育:
【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。
反函数课件 篇4
教学目标
1.使学生理解,能够初步判断两种相关联的量是否成比例,成什么比例.
2.通过观察、比较、归纳,提高学生综合概括推理的能力.
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.
教学重点
理解正反比例的意义,掌握正反比例的变化的规律.
教学难点
理解正反比例的意义,掌握正反比例的变化的规律.
教学过程
一、导入新课
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量
(三)教师谈话
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学
(一)成正比例的量
例1.一列火车行驶的时间和所行的路程如下表:
1.写出路程和时间的比并计算比值.
(1)
(2) 2表示什么?180呢?比值呢?
(3) 这个比值表示什么意义?
(4) 360比5可以吗?为什么?
2.思考
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.
3.小结:有什么规律?
教师板书:商不变
(二)成反比例的量
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.
2.教师提问
(1)计算工效和时间的乘积.
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)
3.小结:有什么规律?(板书:积不变)
(三)不成比例的量
1.出示表格
2.教师提问
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变
(四)结合三组题观察、讨论、总结变化规律.
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程当中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化
不同点:第一组商不变,第二组积不变,第三组和不变.
总结:
3.分别概括
4.强调第三组题中两种相关联的量叫做不成比例
5.教师提问
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式
三、巩固练习
判断下面各题是否成比例?成什么比例?
1.一种圆珠笔
(1)表中有哪两种相关联的量?
(2)说出几组这两种量中相对应的两个数的比
(3)每组等式说明了什么?
(4)两种相关的量是否成比例?成什么比例?
2.当速度一定,时间路程成什么比例?
当时间一定,路程和速度成什么比例?
当路程一定,速度和时间成什么比例?
3.长方形的面一定,长和宽
4.修一条路,已修的米数和剩下的米数.
四、课堂总结
今天这节课我们初步了解了正反比例的意义,并能运用正反比例的意义判断一些简单的问题.通过正反比例意义的'对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是反比例的关系,要抓住两种相关联的量的变化规律,这是本质.
五、课后作业
(一)判断下面每题中的两种量是不是成正比例,并说明理由.
1.苹果的单价一定,购买苹果的数量和总价.
2.轮船行驶的速度一定,行驶的路程和时间.
3.每小时织布米数一定,织布总米数和时间.
4.长方形的宽一定,它的面积和长.
(二)判断下面每题中的两种量是不是成反比例,并说明理由.
1.煤的总量一定,每天的烧煤量和能够烧的天数.
2.种子的总量一定,每公顷的播种量和播种的公顷数.
3.李叔叔从家到工厂,骑自行车的速度和所需时间.
4.华容做12道数学题,做完的题和没有做的题.
六、板书设计
反函数课件 篇5
教学目标:
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
教学重点:
引导学生理解反比例的意义。
教学难点:
利用反比例的意义,正确判断两种量是否成反比例。
教学过程:
一、复习铺垫
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
二、自主探究
(一)教学例1
1.出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?
教师板书:零件总数
每小时加工数×加工时间=零件总数
3.小结
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(二)教学例2
1.出示例2,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1.请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?
教师板书: xy =k(一定)
三、课堂小结
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
四、课堂练习
完成教材43页做一做
五、课后作业
练习七6、7、8、9题。
六、板书设计
成反比例的量 xy=k(一定)
每小时加工数×加工时间=零件总数(一定)
每本页数×装订本数=纸的总页数(一定)
反函数课件 篇6
今天我说课的内容是人教版代数章第节反比例函数及其图象。面我从教材分析、教法设计、学法指导、教学过程、几个方面进行阐述。
一、教材分析主要从地位与作用、教学目标、重点难点三方面进行阐述。
(一)地位与作用
本节课所研究的内容是反比例函数及其图象,函数知识是初中代数的核心内容。随着学习的不断深入,函数把前面所学的方程,不等式等知识有机结合起来,是整个初中代数知识的“桥梁”,反比例函数及其图象是在学生已经初步掌握研究函数的基本方法的基础上,有别于解析式为整式的一次函数。同时,反比例函数的图象也与众不同。
(二)教学目标
依据数学课程标准的要求和教材内容,结合初三学生的认知特点和实际情况,我确立以下教学目标:
知识技能目标:
1、知识目标:
(1)使学生了解反比例函数的概念
(2)使学生能够根据问题中的条件确定反比例函数的解析式。
(3)使学生理解反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减少而变化的情况。
(4)会用待定系数法确定反比例函数的解析式。
2、能力目标:
培养学生的观察能力,分析能力,独立解决问题的能力。
3、德育目标:
(1)向学生渗透数学来源于实践又反过去作用于实践的观点。
(2)使学生体会事物是有规律地变化着的观点。
4、心育目标:
(1)通过学生独立的解决问题,增强学习意志。
(2)让学生在做中学,敢于并乐于展示自我,敢说,敢问,敢于相信自我。
(3)克服对数学学习的畏惧,学习过程中的惰性及对教师的依赖性。
(4)培养对数学学习的信心。
(三)教学重点,难点。
1、教学重点:反比例的概念、图象、性质,以及用待定系数法确定反比例函数的解析性。
2、教学难点:画反比例函数的图象。
因为反比例函数的图象有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难。
二、教法设计
根据本节课的内容,结合初三学生的认知特点,我确定本节课教法的整体构思是:从学生生活经验和已有的知识出发,采用引导、启发、合作、探究等方法,经历观察、思考、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习;提高自主探究、合作交流和分析归纳能力;同时在教学过程对不同层次的学生进行分类指导,让每个学生都得到充分的发展;这样做,充分体现了“学生是课堂的主人,教师是数学学习的组织者、引导者与合作者“和以学生的发展为本的新课程理念,另外,我还注意现代信息技术与学科教学的整合,充分利用多媒体技术,采用动画的形式,变抽象为直观,变复杂为简单,有效的突破重点、难点,同时加快了教学节奏,扩大课堂容量,极大地提高了课堂教学效益。
三、学法指导:
在教学过程中,学生掌握一种方法远比学会一个知识点重要的多。为使学生掌握科学的学习方法,养成良好的学习习惯,我根据课程标准的要求及本节的内容以及学情分析,在课堂教学中,我充分发挥学生在教学中的主体作用,让他们观察、操作、归纳、猜想和验证的方式进行学习,养成善于观察、乐于思考、勤于动手、敢于表达的学习习惯,挖掘学习潜能,培养自主学习和与人合作交流的能力。
四、教学过程:
(一)、导入新知:
提问:
1、小学时我们是否反比例关系?结合实例谈一谈如何叙述反比例关系?
(1)当路程S一定时,时间t与速度v之间的关系。
(2)当矩形面积S一定时,长a与宽b之间的关系。
2、若从函数的观点看,上面例子中的两个变量可以分别看作自变量和函数。可以写成怎样的函数关系式呢?
让学生改写,得出结论。用以得出反比例函数的概念。
设计意图:通过课件展示的实例,形象地把抽象的定义引出。增加学习兴趣,降低思维难度,减少学生对函数部分学习的畏惧心理。增加学习兴趣,强化主动的学习动机。
(二)、新课传授:
1、反比例函数的定义。
问1、说出观察两个变形式后的初步印象,什么是反比例函数?
问2、当路程S是常数时,时间t就是速度v的反比例函数,能否说:速度v是时间t的反比例函数呢?(学生思考,进一步加深对反比例函数概念的理解)
巩固练习:(投影出示练习题)学生口答。鼓励学生积极思考,勇于表达自己的想法,回答好的给予赞扬,不完善的或不得要领的给予热情的帮助,鼓励。
这一环节让学生自主探索,循序渐进的挖掘定义的内涵,去体会数学的严谨。通过授课的语言,表情动作为学生创设民主的氛围,为学生自信的心理品质的发展和学习主动性的培养提供良好的心理环境。
2、反比例函数的图象和性质
(1)学生体会,自己动手画图。
(投影出示)画出反比例函数的图象。
问1:画函数图象的关键问题是什么?
问2:选值时,你认为要注意什么问题?
问3:你能不能自己完成这道题?
让学生自己动手,帮助学生消除依赖心理,把作图最标准的用投影仪投出,以此为例图。并希望大家学习,养成良好的学习习惯,培养严谨的学习态度。
(2)引导学生分析图象的特征和性质
问:观察函数y=kx和y=kx—1的图象。分析反比例函数的特征。找出反比例函数图象有那些共同的特点?有那些不同的特点?
①分组讨论,并鼓励全体同学要细心,有耐心,善于观察、善于发现并相信靠大家的智慧会全部找出。这一环节意在培养学生的观察、猜想能力,用自主探索、合作讨论交流的方式,促进学生的积极参与,积极的去发现、思考,体会学习方法。
②找学生小结本组讨论的结果。
(看哪组总结的最全、语言最标准、简练,不够准确的下面组可以给予补充)在本环节中回答精彩的给予肯定,没想出的鼓励大家继续去发现,最后让大家去评判回答最佳组,激励大家学习他们肯于动脑、积极思考的态度,让大家给予掌声,让学生体会努力后成功的感觉。并学会且乐于自己去思考问题,解决问题。
③根据对图象的观察,由得到的图象特征总结反比例函数的性质。
(由电脑投影出空表格,大家一起添表格内容,巩固记忆)
双曲线的两分支位于一、三象限,y随x的增大而减小。
双曲线的两分支位于二、四象限,y随x的增大而增大。
设计意图:使每个学生的认知、条理更清晰,呈现出本节课知识重点,巩固记忆。又因为是大家努力的结果,使学生
体会团结协作的作用和努力后的成就感和自豪感。
3。(待定系数法)确定函数解析式
投影出示例题:已知y与x成反比例,并且当x=3时y=4
求x=1.5时,y的值。
用提问的方式对此题加以分析。
(1)y与x成反比例是什么含义?
(2)根据式子能否求出当x=1.5时,y的值?
(3)要想求出y的值,必须先知道哪个量呢?
(4)怎样才能确定k的值?用什么条件?
(5)你能否自己完成这道题?(学生板演)
设计意图:在问、想、做中鼓励思考,体会成功的感觉,让学生在做中学,敢于并乐于展示自我,使学生敢说、敢问,敢于相信自我。
4、巩固练习(反比例函数性质的巩固与拓展)
(投影出示自选题目)
联系所学知识由学到用的结合。使学生对新知识有更深的理解,是知识从感性到理性的一个跃迁。
5、总结:
学生:从学习知识和情感体验等方面谈体会和收获。
教师:肯定大家的努力及大家在本堂课中的表现。表扬在本节课中表现突出的同学。
6、布置作业
教材130页1、2、3、4。131页5、6。
反函数课件 篇7
一、 说教学内容:
(一)、本课时的内容、地位及作用:
本课内容是华东师大版八年级(下)数学第十八章《函数及其图象》第四节《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数-—反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
(二) 、本课题的教学目标:
教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:
1.知识目标
(1)、通过对实际问题的探究,理解反比例函数的意义。
(2)、体会反比例函数的不同表示法。
( 3 )、会判别反比例函数。
2.能力目标
(1)、通过两个实际问题,培养学生勤于思考和分析归纳的能力。
(2)、在思考、归纳等过程中,发展学生的合情说理能力。
(3)、让学生会求反比例函数关系式
3.情感目标
(1)通过已有的知识经验探索的过程,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。
(2)理论联系实际,让学生有学有所用的感性认识。
4、本课题的重点、难点和关键:
重点:反比例函数的意义;
难点:求反比例函数的解析式;
关键:如何由实际问题转化为数学模型。
二、 说教学方法:
本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。
由于学生才第一次接触函数,对一次函数尽管已经学习了,但对函数这部分内容不是十分熟练。因此,在教这节课时,要注意和一次函数,尤其是正比例函数与反比例函数的类比。引导学生从函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。
对于所设置的两个问题为学生所熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数。
三、 说学法指导:
课堂,只有宝贵的四十五分钟,有相当一部分学生很难驾驭,身不由已,注意力不能集中。针对这种情况,故意设置两个贴近生活的实例,让学生展开想象的翅膀,主动思考,相互探讨,学生互动,师生互动。在想象与探讨的互动中,迸发出思想的火花,寻求问题的答案――反比例函数的意义。
为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。
在本课时的教学双边活动过程中,抓住初中学生的心理生理特点,尽量运用生动的语言,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的能力。
四、 说教学程序:
1、 复习引入:
师生共同回忆前一阶段所学知识,再次强调函数的重要性,同时启开新的课题——反比例函数(教师板书),(若作业中存在普遍问题,应先纠正)。
2、 创设问题情景,激发学生的学习热情,培养学生遵纪守法的意识:教师陈述本班小王发生的一个故事(问题1),故事的经过是这样的:昨天下午3时许,小王的爸爸骑摩托车带着小王去了离家24公里的县城,因摩托车没有注册入户,被交警将车扣留,6点钟小王父子坐了小四轮按原路返回。
师问:
(1)、在这个故事中,有几种交通工具?(生答:两种)
(2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?(生答:不一样、一样、不一样)
师生共同探究,时间的变化是由速度的变化所引起,设时间为t,速度为v,则有 t=24/v
问题2、我校车棚工程已经启动,规划地基为36平方米的矩形,设一边长为x(米),则另一边长y(米)与x(米)的函数关系式。
仿上一问题让学生分析变量关系,然后教师总结:依矩形面积可得
Xy=36
即y=36/x
3、 归纳得出结论:
一般地,形如y=k/x (k是常数,k不为0)的函数叫做反比例函数。
在此教师对该函数做些说明。
4、 例题讲解:
例1、下列函数关系中,哪些是反比例函数?
(1)、平行四边形面积是12平方厘米,它的一边是a厘米,这边上的高是h厘米,a与h的函数关系。
反函数课件 篇8
教学目标:
1.通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例
2.培养学生的逻辑思维能力
3.感知生活中的数学知识
重点难点1.通过具体问题认识反比例的量。
2.掌握成反比例的量的变化规律及其 特征
教学难点:
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程:
一、课前预习
预习24---26页内容
1、什么是成反比例的量?你是怎么理解的?
2、情境一中的两个表中量变化关系相同吗?
3、三个情境中的两个量哪些是成反比例的量?为什么?
二、展示与交流
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律
情境(一)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考
同桌交流,用自己的语言表达
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定
情境(三)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系
写出关系式:每杯果汁量×杯数=果汗总量(一定)
5、以上两个情境中有什么共同点?
反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
活动四:想一想
二、 反馈与检测
1、判断下面每题是否成反比例
(1)出油率一定,香油的质量与芝麻的质量。
(2)三角形的面积一定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积一定,底面积和高。
(6)小林做10道数学题,已做的题和没有做的题。
(7)长方形的长一定,面积和宽。
(8)平行四边形面积一定,底和高。
2、教材“练一练”P33第1题。
3、教材“练一练”P33第2题。
4、找一找生活中成反比例的例子,并与同伴交流。
反函数课件 篇9
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x)。则y=f(x)的反函数为y=f^-1(x)。
存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)
【反函数的性质】
(1)互为反函数的两个函数的图象关于直线y=x对称;
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)一般的偶函数一定不存在反函数(但一种特殊的偶函数存在反函数,例f(x)=a(x=0)它的反函数是f(x)=0(x=a)这是一种极特殊的函数),奇函数不一定存在反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(5)一切隐函数具有反函数;
(6)一段连续的函数的单调性在对应区间内具有一致性;
(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。
(8)反函数是相互的
(9)定义域、值域相反对应法则互逆(三反)
(10)原函数一旦确定,反函数即确定(三定)
例:y=2x-1的反函数是y=0.5x+0.5
y=2^x的反函数是y=log2 x
例题:求函数3x-2的反函数
解:y=3x-2的定义域为R,值域为R.
由y=3x-2解得
x=1/3(y+2)
将x,y互换,则所求y=3x-2的反函数是
y=1/3(x+2)
反函数课件 篇10
所谓反函数就是将原函数中自变量与变量调换位置,用原函数的变量表示自变量而形成的函数。存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。
数学函数课件
宜未雨而绸缪,毋临渴而掘井为有力保证事情或工作开展的水平质量,我们要策划出一份最佳方案,在制定了方案过后要先对其可行性、可操作性进行测试和分析。如果将自己写的方案变得更加全面呢?小编特别为你收集的“数学函数课件”,但愿对你的学习工作带来帮助。
数学函数课件(篇1)
【学习目标】
1、从图像平移和描点法两个角度了解余弦函数的图像画法;
2、类比学习正弦函数的图像方法理解五点法画函数 = csx,x∈[0,2π]的简图;
3、会利用余弦函数的图像研究其定义域、值域、周期性、最大(小)值、单调性、奇偶性、图像的对称性;
【学习重点】
五点法画余弦函数图象和余弦函数的性质
【学习难点】
余弦函数的性质性质的应用
【思想方法】
能从图形观察、分析得出结论,体会数形结合的思想方法
【学习过程】
一、预习自学(把握基础)
(阅读课本第31~33页“练习”以上部分的内容,类比正弦函数的图像和性质的研究方法,理解 = csx,x∈[0,2π]的简图并归纳其性质 )
1、余弦函数 = csx,x 411【导学案】余弦函数的图像与性质 r,的图像的画法有 和 两种;
2、描点法画余弦曲线时的五个关键点是:
411【导学案】余弦函数的图像与性质
3、试结合余弦曲线理解归纳出余弦函数的性质:
二、合作探究(巩固深化,发展思维)
例1.用“五点法”画出下列函数的简图.
(1)=-csx , x 411【导学案】余弦函数的图像与性质 [0,2π] (2)=3csx, x 411【导学案】余弦函数的`图像与性质 [-π,π]
例2.画出函数=csx-1, x 411【导学案】余弦函数的图像与性质 r的简图,根据图像讨论函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性、图像的对称性;
例3、请分别用单位圆和余弦函数图像求满足不等式 411【导学案】余弦函数的图像与性质 的x的集合。
三、学习体会
1、知识方法:
2、我的疑惑:
四、达标检测(相信自我,收获成功)
1.=1+csx, x 411【导学案】余弦函数的图像与性质 [0,2π]的图像与直线=1的交点个数为
2、函数=2-csx, x 411【导学案】余弦函数的图像与性质 [0,2π]的值域为 ,增区间为
3、= 411【导学案】余弦函数的图像与性质 的定义域为 ;
4、=1+csx的奇偶性是
5、 411【导学案】余弦函数的图像与性质 的递减区间是 ;
6.观察余弦曲线写出满足csx<0的x的集合
数学函数课件(篇2)
。一、说教学内容:
(一)、本课时的内容、地位及作用:
本课内容是华东师大版八年级(下)数学第十八章《函数及其图象》第四节《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
(二)本课题的教学目标:
教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:
1.知识目标
(1)、通过对实际问题的探究,理解反比例函数的意义。
(2)、体会反比例函数的不同表示法。
(3)、会判别反比例函数。
2.能力目标
(1)、通过两个实际问题,培养学生勤于思考和分析归纳的能力。
(2)、在思考、归纳等过程中,发展学生的合情说理能力。
(3)、让学生会求反比例函数关系式
3.情感目标
(1)、通过已有的知识经验探索的过程,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。
(2)、理论联系实际,让学生有学有所用的感性认识。
4、本课题的重点、难点和关键:
重点:反比例函数的意义;
难点:求反比例函数的解析式;
关键:如何由实际问题转化为数学模型。
二、说教学方法:
本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。
由于学生才第一次接触函数,对一次函数尽管已经学习了,但对函数这部分内容不是十分熟练。因此,在教这节课时,要注意和一次函数,尤其是正比例函数与反比例函数的类比。引导学生从函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。
对于所设置的两个问题为学生所熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数,
资料共享平台
《初中数学说课稿:反比例函数》()。三、说学法指导:
课堂,只有宝贵的四十五分钟,有相当一部分学生很难驾驭,身不由已,注意力不能集中。针对这种情况,故意设置两个贴近生活的实例,让学生展开想象的翅膀,主动思考,相互探讨,学生互动,师生互动。在想象与探讨的互动中,迸发出思想的火花,寻求问题的答案――反比例函数的意义。
为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。
在本课时的教学双边活动过程中,抓住初中学生的心理生理特点,尽量运用生动的语言,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的'能力。
四、说教学程序:
(一)复习引入:
由于学生所学过的一次函数、正比例函数等概念时间已较长,所以在创设情境时对这些知识加以复习,以换取学生以有知识的记忆。回忆师生共同回忆前一阶段所学知识,同时启开新的课题——反比例函数(教师板书)
设计意图:旧知的回顾,为了新知的探索作好铺垫)
(二)创设情景,激发热情
用两个最贴近学生生活实例引出反比例函数的概念,教师发挥主导作用,启发学生思考。
问题1、
小华的爸爸早晨骑自行车带小华到15千米的镇外去赶集,回来时让小华乘公共汽车,用的时间少了。假设两人经过的路程一样,而且自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。
师问:
(1)、在这个故事中,有几种交通工具?(生答:两种)
(2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?(生答:不一样、一样、不一样)
师生共同探究,时间的变化是由速度的变化所引起,设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。因为在匀速运动中,时间=路程÷速度, 则有 t=15/v
你从这个关系式中发现了什么?
教师分析变量t与v之间的关系:
① 路程一定时,时间t就是速度v的反比例函数。即速度增大了,时间变小;速度减小了,时间增大。
② 自变量v的取值是v﹥0
问题2、
学校校外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。
仿上一问题让学生分析变量关系,然后教师总结:依矩形面积可得
xy=24 即y=24/x
数学函数课件(篇3)
本节课是北师大版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.
它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.
函数单调性的概念,判断和证明简单函数的单调性.
函数单调性概念的生成,证明单调性的代数推理论证.
学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“随的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.
本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.
1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.
2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.
3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.
4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.
在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.
为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:
1.指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.
2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.
3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.
4.在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.
实例 科考队对沙漠气候进行科学考察,下图是某天气温随时间的变化曲线.请你根据曲线图说说气温的变化情况?
预设:学生的关注点不同,如气温的最值,某时刻的气温,某时间段气温的升降变化(若学生没指明时间段,可追问)等.图象在某区间上(从左往右)“上升”或“下降”的趋势反映了函数的一个基本性质──单调性(板书课题).
设计说明:从科考情境导入新课,了解“早穿棉袄午穿纱,围着火炉吃西瓜”这一独特的沙漠气候,直观形象感知气温变化,自然引入函数的单调性.
函数是描述事物变化规律的数学模型.如果清楚了函数的变化规律,那么就基本把握了相应实物的变化规律.在事物变化过程中,保存不变的特征就是这个事物的性质.因此,研究函数的变化规律是非常有意义的.
问题1:观察下列函数图象,请你说说这些函数有什么变化趋势?
设计说明:学生回答时可能会漏掉“在某区间上”,规范表达“函数在哪个区间上具有怎样的单调性”.借此强调函数的单调性是相对某区间而言的,是函数的局部性质.
设函数的定义域为,区间.在区间上,若函数的图象(从左向右)总是上升的,即随的增大而增大,则称函数在区间上是递增的,区间称为函数的单调增区间(学生类比定义“递减”,接着推出下图,让学生准确回答单调性.)
设计说明:从图象直观感知到文字描述,完成对函数单调性的第一次认知.明确相关概念,准确表述单调性.学生认为单调性的知识似乎够用了,为下面的认知冲突做好铺垫.
问题2:(1)下图是函数的图象(以为例),它在定义域R上是递增的吗?
(2)函数在区间上有何单调性?
预设:学生会不置可否,或者凭感觉猜测,可追问判定依据.
设计说明:函数图象虽然直观,但是缺乏精确性,必须结合函数解析式;但仅凭解析式常常也难以判断其单调性.借此认知冲突,让学生意识到学习符号化定义的必要性.自然开始探索.
问题3:(1)如何用数学符号描述函数图象的“上升”特征,即“随的增大而增大”?
以二次函数在区间上的单调性为例,用几何画板动画演示“随的增大而增大”,生成表格(每一秒生成一对数据).
设计说明:先借助图形、动画和表格等直观感受“随的增大而增大”,然后让学生思考、讨论得出,若,则必须有.
(2)已知,若有.能保证函数在区间上递增吗?
拖动“拖动点”改变函数在区间上的图象,可以递增,可以先增后减,也可以先减后增.
(3)已知,若有,能保证函数在区间上递增吗?
拖动“拖动点”,观察函数在区间上的图象变化.
设计说明:先让学生讨论交流、举反例,然后借助几何画板动态说明验证两个定点不能确定函数的单调性,三个点也不行,无数个点行不行呢?引导学生过渡到符号化表示,呈现知识的自然生成.
(4)已知,若有能保证函数在区间上递增吗?
设计说明:可先请持赞同观点的同学说明理由,再请持反对意见的学生画出反驳,然后追问:无数个也不能保证函数递增,那该怎么办呢?若学生回答全部取完或任取,追问“总不能一个一个验证吧?”
紧接着师生一起回顾子集的概念(PPT展示教材上子集的定义),再次体验对“任意一个”进行操作,实现“无限”目标的数学方法,体会用“任意”来处理“无限”的数学思想.
问题4:如何用数学语言准确刻画函数在区间上递增呢?
预设:请学生自愿尝试概括定义.板书“任意,当时,都有,则称函数在区间上递增”,则突出关键词“任意”和“都有”;若缺少关键词“任取”或“任意”,则追问“验证两个点就能保证函数在区间上递增吗?”.
问题5:请你试着用数学语言定义函数在区间上是递减的.
预设:为表达准确规范,要求学生先写下来,然后展示.并有意引导使用“任意,当时,都有,则称函数在区间上递减”,以此打破必须“”的思维定式.
(1)设函数的定义域为,若对任意,都有,则在区间上递增;
(2)设函数的定义域为R,若对任意,且,都有,则是递增的;
(3)反比例函数的单调递减区间是.
设计说明:让学生分组讨论,然后进行展示性回答.若学生认为正确,则要求说明理由;若学生认为错误,则要求学生到黑板上画出反例(题(3)可追问怎么修改).通过构造反例,逐步完善和加深对函数单调性的理解.
设计说明:对照定义板书示范,指明变形的目的是变出因式等,并让学生提炼证明的基本步骤.
(2)在上递增.
设计说明:回答“问题2”悬而未决的问题.先请两位学生板演,然后由其他学生完善步骤.
思考题:物理学中的玻意耳定律(为正常数)告诉我们,对于一定量的气体,当其体积减小时,压强将增大.试用函数的单调性证明.
设计说明:引导学生用数学知识解释其他学科的规律,培养学生应用数学的意识和能力.
设计说明:先给出问题,要求学生自主小结,再推出引导性关键词,使得总结简明、到位、拔高.
(2)判断并证明函数的单调性.
探究题:向一杯水中加一定量的糖,糖加得越多糖水越甜.请你运用所学的数学知识解释这一现象.
设计说明:课堂作业是为及时巩固初学的知识和方法,完善对“对勾函数”的认识.探究题是为培养学生运用数学的意识(从地理情境开始,中间解答物理定律,最后以化学实验结束),感受数学的实用性和人文性.
反思“三个理解”的理解程度、教学策略和落实情况等.
数学函数课件(篇4)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。
(1) . 两个偶函数相加所得的和为偶函数.
(2) . 两个奇函数相加所得的和为奇函数.
(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
(4) . 两个偶函数相乘所得的积为偶函数.
(5) . 两个奇函数相乘所得的积为偶函数.
(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.
(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;
函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合
(1)化归法;(2)图象法(数形结合),
(3)函数单调性法,
(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等
数学函数课件(篇5)
第一块平面直角坐标系及函数平面直角坐标系是研究数学问题的一种基本工具之一.函数是数学中一个十分重要的概念,它借助于平面直角坐标系架起了数形结合的桥梁。
正确理解函数的概念,掌握函数图象及其性质大分析解决问题中起关键作用。
1.函数的概念比较抽象,初中生理解时有一定难度,关键是应了解我们研究函数的实质就是研究两个变量之间的关系。
在同一问题中,变化的数量之间往往有一定的联系,提示出某种规律,一个量变化,另一个量随之变化。
2.建立了平面直角坐标系后,平面内的点与有序实数对之间建立了一一对应关系。
坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式。
点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键。
所以,求点的坐标和探求函数解析式是研究函数的两大重要课题。
3.函数体现的是一个变化过程,在这一变化过程中要具备下列三点:(1)只能有两个变量;(2)一个变量随另一个变量的数值变化而变化;(3)对于自变量的每一个确定值,函数有唯一的值与它对应,允许多个x对应同一个y,但不允许一个x对应着多个y。
4.函数自变量的取值范围是一个重要的内容,它既要保证函数关系式有意义,又要保证符合实际意义。
5.函数的表示方法一般有三种:表格、图象、解析式,它们各有优缺点。
6.在平面直角坐标系中,如果以自变量的值为横坐标、相应的函数值为纵坐标描点,所有这样的点组成的图形就是这个函数的图象。
一般分三个步骤画函数的图象:列表——描点——连线(平滑曲线)。
7.函数与图象的关系必须理解:函数图象上的点的坐标满足函数关系式;满足函数关系式的点一定在函数图象上。
就是我们常说的纯粹性和完备性。
8.坐标平面内的点的坐标特征:包括坐标轴上的点,各象限角平分线上的点,关于坐标轴、原点对称的点,平行于坐标轴的直线上的点及点的平移变换等都应熟练掌握。
第二块一次函数一次函数是初中阶段函数的一种具体形态。
如果两个变量x和y之间的函数关系可以表示为y=kx+b(k,b为常数,且k等于0)的形式,那么称y是x的一次函数,其中自变量x可取一切实数。
当b=0时,y也叫做x的正比例函数。
1.正比例函数是一次函数,但一次函数不一定是正比例函数,只有b=0时,才是正比例函数。
2.一次函数的图象是一条直线,画直线y=kx+b时,一般选点(0,b)和点(-b/k,0),这恰好是直线与y轴和x轴的交点。
而当-b/k不是整数时,(-b/k,0)也常被横纵坐标均为整数的点所替代。
当b=0时,图象过原点,即正比例函数y=kx的图象是过原点的一条直线,画直线y=kx时,一般选原点(0,0)和点(1,k)。
3.一次函数y=kx+b中,k,b的符号与函数的增减性及直线的位置(指经过的象限)有直接关联,应熟练掌握。
一般来说,kgt;0时,图象经过第一、三象限,y随x的增大而增大;klt;0时,图象经过第二、四象限,y随x的增大而减小;bgt;0时,图象过第一、二象限;blt;0时,图象过第三、四象限;b=0时,图象过原点。
4.求一次函数y=kx+b的表达式,实际上是求出k,b的值,一般需要两个条件,用二元一次方程组求得k,b,然后写出表达式。
5.两个一次函数的图象的交点坐标,即为两个一次函数解析式所组成的方程组的解。
数学函数课件(篇6)
一、教学目标:
1.掌握用待定系数法求三角函数解析式的方法;
2.培养学生用已有的知识解决实际问题的能力;
3.能用计算机处理有关的近似计算问题.
二、重点难点:
重点是待定系数法求三角函数解析式;
难点是选择合理数学模型解决实际问题.
三、教学过程:
【创设情境】
三角函数能够模拟许多周期现象,因此在解决实际问题中有着广泛的应用.
【自主学习探索研究】
1.学生自学完成P42例1
点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm,周期为3s,且物体向右运动到距平衡位置最远处时开始计时.
(1)求物体对平衡位置的位移x(cm)和时间t(s)之间的函数关系;
(2)求该物体在t=5s时的位置.
(教师进行适当的评析.并回答下列问题:据物理常识,应选择怎样的函数式模拟物体的运动;怎样求和初相位θ;第二问中的“t=5s时的位置”与函数式有何关系?)
2.讲解p43例2(题目加已改变)
2.讲析P44例3
海水受日月的引力,在一定的时候发生涨落的现象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常的情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮是返回海洋.下面给出了某港口在某季节每天几个时刻的水深.
(1)选用一个三角函数来近似描述这个港口的水深与时间的函数关系,并给出在整点时的近似数值.
(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与海底的距离),该船何时能进入港口?在港口能呆多久?
(3)若船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
问题:
(1)选择怎样的数学模型反映该实际问题?
(2)图表中的最大值与三角函数的哪个量有关?
(3)函数的周期为多少?
(4)“吃水深度”对应函数中的哪个字母?
3.学生完成课本P45的练习1,3并评析.
【提炼总结】
从以上问题可以发现三角函数知识在解决实际问题中有着十分广泛的应用,而待定系数法是三角函数中确定函数解析式最重要的方法.三角函数知识作为数学工具之一,在以后的学习中将经常有所涉及.学数学是为了用数学,通过学习我们逐步提高自己分析问题解决问题的能力.
四、布置作业:
P46习题1.3第14、15题
数学函数课件(篇7)
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
数学函数课件(篇8)
初中数学活动课教案一 函数图象的性质活动目标:1、利用几何画板的形象性,通过量的变化,验证并进一步研究函数图象的性质。2、利用几何画板的动态性,从变化的几何图形中,寻找不变的几何规律。3、学会作简单函数的图象,并对图象作初步了解。4、通过本节课的教学,把几何画板作为学生认知的工具,从而激发学生学习和探索数学的兴趣。活动重点:图形的性质和规律的探索 活动难点:几何画板的操作(作函数的图象)活动设施:微机室(有液晶投影仪和大屏幕或大彩电);软件:windows操作平台、几何画板、office2000等、教师准备好的五个画板文件:hstx1.gsp、hstx2.gsp、hstx3.gsp 、ymdl1.gsp、ymdl2.gsp。活动过程:一、展示活动主题和目标:二、活动过程: 操作练习一: 按下列步骤进行操作,并回答相应的问题。1、打开c:\sketch\hstx1.gsp画板文件;2、拖动点E和点F沿坐标轴运动(或双击按钮“动画1”),同时观看解析式中的k和b的变化。①当k>0时,图象经过哪几个象限?②当k0和k
数学函数课件(篇9)
1、根据学生的认知基础,创设丰富的现实情景,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律。
2、遵循从具体到抽象,从特殊到一般,感性到理性的渐进认知规律。先是学生对问题1、2、3的分析,都是从具体的数字入手,慢慢引导抽象出含有字母的等式;接着是分小组对问题4、5的分析,是在分析了前面三个问题的基础上,加大一定的难度和深度,让学生加深体验,直接抽象出含有字母的等式,最后对第96页的两个思考进行分析观察,然后引导得出常量、变量和函数的定义。
3、遵循以教师为主导,学生为主体的教学原则整堂课的问题解决,基本上都是教师引导,学生独立自主或者是合作研究完成的。“学生的数学学习活动,应当是一个生动活泼的、主动和富有个性的过程”。在课堂中,很多地方都是让学生自主完成,然后把自己的成果说出来与大家共享。“动手实践、自主探索与合作交流是学生学习数学的重要方式”。本节课对问题学习,将个人竞争转化为小组间的竞争,有利于培养学生的合作精神和竞争意识。引导学生先观察、分析,后归纳,然后提出注意事项,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括能力。同时引导学生在探索变量之间的规律,抽象出函数概念的过程中,注意学生的过程经历和体验,让学生领悟到现实生活中存在着多姿多彩的数学问题,并能从中提出问题,分析问题和解决问题,使学生真正成为数学学习的主人。可惜的是学生的积极性不是很高,合作学习的意识也比较单薄,作为老师也没能及时的调动学生的积极性。
4、面向全体学生,人人学有用的数学。学生的个体差异是存在的,在教学中不能一概而论。合作交流能很好的弥补一个教师难以面向有差异的众多学生的教学不足,实现每个学生得到不同的、最好的发展、不过,在小组合作交流的时候,要加强指导,真正的让每个学生都参与其中,真正体验到学习的快乐和获得心智的发展。作业题的必做题和选做题也是考虑到不同层次的学生的要求不同。
5、在问题4上,如果拿几个弹簧秤到现场,让学生亲自动手测量,再根据测量得到的数据进行分析,效果可能会更好。但是也有可能出现时间比较紧的情况。
6、学生对函数概念的理解还不是很透彻,需要进一步加强这方面的练习和指导。
数学函数课件(篇10)
教学目标:
1.使学生应用由定义求导数的三个步骤推导四种常见函数的导数公式;
2.掌握并能运用这四个公式正确求函数的导数.
教学重点:四种常见函数的导数公式及应用
教学难点:四种常见函数的导数公式
教学过程:
一.创设情景
我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的'瞬时速度.那么,对于函数 ,如何求它的导数呢?
由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数.
二.新课讲授
1.函数 的导数
根据导数定义,因为
所以
函数 导数
表示函数 图像(图3.2-1)上每一点处的切线的斜率都为0.若 表示路程关于时间的函数,则 可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.
2.函数 的导数
因为
所以
函数 导数 表示函数 图像(图3.2-2)上每一点处的切线的斜率都为1.若 表示路程关于时间的函数,则 可以解释为某物体做瞬时速度为1的匀速运动.
3.函数 的导数
因为
所以
函数 导数
表示函数 图像(图3.2-3)上点 处的切线的斜率都为 ,说明随着 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当 时,随着 的增加,函数 减少得越来越慢;当 时,随着 的增加,函数 增加得越来越快.若 表示路程关于时间的函数,则 可以解释为某物体做变速运动,它在时刻 的瞬时速度为 .
4.函数 的导数
因为
所以
函数 导数 (2)推广:若 ,则
三.课堂练习
1.课本P13探究1
2.课本P13探究2
4.求函数 的导数
四.回顾总结
函数 导数
五.布置作业
数学函数课件(篇11)
通过观察一些函数图象的特征,形成增(减)函数的直观认识. 再通过具体函
数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义 . 掌握用定义证明函数单调性的步骤。
(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。
(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;
(2)学会运用函数图象理解和研究函数的性质;
(3)能够熟练应用定义判断与证明函数在某区间上的单调性.
3、情态与价值,使学生感到学习函数单调性的必要性与重要性,增强学习
难点:利用函数的单调性定义判断、证明函数的单调性.
三、学法与教学用具
1、从观察具体函数图象引入,直观认识增减函数,利用这定义证明函数单调性。通过练习、交流反馈,巩固从而完成本节课的教学目标。
观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律。
以上就是育德教育为大家准备的高中数学教师试讲教案,希望大家都能通过试讲环节。
数学函数课件(篇12)
第一教时
教材:
角的概念的推广
目的:
要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
过程:
一、提出课题:“三角函数”
回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。
二、角的概念的推广
1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”
2.讲解:“旋转”形成角(P4)
突出“旋转” 注意:“顶点”“始边”“终边”
“始边”往往合于轴正半轴
3.“正角”与“负角”——这是由旋转的方向所决定的。
记法:角 或 可以简记成
4.由于用“旋转”定义角之后,角的范围大大地扩大了。
1° 角有正负之分 如:a=210° b=-150° g=-660°
2° 角可以任意大
实例:体操动作:旋转2周(360°×2=720°) 3周(360°×3=1080°)
3° 还有零角 一条射线,没有旋转
三、关于“象限角”
为了研究方便,我们往往在平面直角坐标系中来讨论角
角的顶点合于坐标原点,角的始边合于 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)
例如:30° 390° -330°是第Ⅰ象限角 300° -60°是第Ⅳ象限角
585° 1180°是第Ⅲ象限角 -20xx°是第Ⅱ象限角等
四、关于终边相同的角
1.观察:390°,-330°角,它们的终边都与30°角的终边相同
2.终边相同的角都可以表示成一个0°到360°的角与 个周角的和
390°=30°+360°
-330°=30°-360° 30°=30°+0×360°
1470°=30°+4×360°
-1770°=30°-5×360°
3.所有与a终边相同的角连同a在内可以构成一个集合
即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和
4.例一 (P5 略)
五、小结: 1° 角的概念的推广
用“旋转”定义角 角的范围的扩大
2°“象限角”与“终边相同的角”
六、作业: P7 练习1、2、3、4
习题1.4 1
课件范本:续写炮手教学反思(430字)
有时,方案的制定比执行本身更为重要。面对即将开展的工作项目,我们最好是预先准备好行动的方案,方案中必须妥善安排好我们每个人的行动,如何写好一篇方案呢?为满足您的需求,小编特地编辑了“课件范本:续写炮手教学反思(430字)”,但愿对您的学习工作带来帮助。
续写炮手教学反思【篇一】
二年级改写扩写作文题目:续写《小摄影师》
第二天早晨,高尔基很早就起床了。他在想题目:那个小男孩还会来吗?
用过早餐,高尔基有事出门去了,一直忙到下午四点多才回来。到家门后,他有意识地向四处望了望,一眼就看见了坐在人行道边上的小男孩,手里仍然拿那架照相机。
看见高尔基,小男孩马上跑过来,不好意思地对高尔基说题目:昨天是我太粗心了,真对不起!说完深深地鞠了个躬。
没关系,孩子。以后汲取教训就行了。高尔基微笑着说,用手摸了摸小男孩的头。
我已经等了您一天了,我还是想给你照一张相,您看能行吗?小男孩仰起脸,小脸上写满了期待。
我很乐意!
进了屋,按小男孩昨天的要求,很快就照了相。小男孩高兴地离开了。
过了几天,在小男孩读书的那所学校里,新办了一期墙报,上面贴着一张高尔基的相片,相片上的高尔基面带微笑,似乎在鼓励孩子们好好学习,茁壮成长呢!
续写炮手教学反思【篇二】
这时,将军才恍然大悟。
“对不起,我不应该那么激动,结果做错了。到时等法国军队胜利了,我们给盖新房子,我出钱好吗?”将军说到。
“什么时候胜利?”炮手急切地问道。
“如果你努力,没几周就胜利!”将军说。
炮手一听,脸上露出了笑容。接着他们就开始商量计策。
晚上,夜深人静。忽然,一颗炮弹打破了寂静的夜空,法军如洪水般冲向德军驻地。德军毫无防备,都四散逃命。
就这样,他们用这种办法把德军打得焦头烂额,溃败而逃。法国胜利后,将军果然守信用给炮手盖了一座豪华的房子。
从此,炮手过上了幸福的生活。
泡桐树小学20xx级2班
续写炮手教学反思【篇三】
法国军队终于把德国侵略者赶跑了,炮手回到了自己的家乡。
当他看到别人的房子完好无缺时,他心想:我家的房子乡亲们一定也帮我修好了。可当他来到自己家的土地时,他吃了一惊:他家是一片废墟。他想:我家怎么会是这样?乡亲们为什么没有帮我修好?无奈之下,炮手只好先住旅馆。
在住旅馆的日子里,炮手并没有闲着。他先是去山上砍木头,没过几天,一大堆木头就整整齐齐地堆放在了他家的废墟上。过了几天,炮手把他家废墟中的砖头也整整齐齐地堆在一旁。
在接下来的几天中,炮手用那一大堆木头和砖头为自己建造了一个温暖的小家。于是,他搬进了小家,不用再住旅馆了。
有一天,炮手出去散步,便听见有人在背后对他指指点点的,不管走到哪儿都听到有人在批评他。有的还说他真傻,把自己的家给炸了。刚开始炮手只是笑了笑,把他们的话当耳边风。可到了最后,他实在容忍不住了,就气冲冲地对别人说:要是当初我没有炸毁我的家,你们现在还有空闲的时间来说别人吗?那些说他的人都被问得张口结舌了。
回到家,炮手边走边说:你们竟敢瞧不起我,我发誓我一定会让你们对我另眼相看的。于是他便用砖头围成一个鱼塘,准备养鱼。他买来鱼苗儿,放入鱼塘中,每天精心喂养小鱼。过了不久,炮手成为了一个养鱼专家,他养的鱼质量非常好,每天的订单像雪花一样飘来,财源滚滚,曾经说他的人都对他竖起了大拇指。炮手见了,心里乐开了花。
从此,炮手就过着幸福的生活。
续写炮手教学反思【篇四】
炮手的那一发炮虽然使战争取得了胜利,但也摧毁了他们家唯一的房子,让他对家人满怀愧疚。终于他做了一个自私的决定通过时光隧道返回那一年、那一天、那个时刻,然后违背将军的命令,让自己有个家。
炮声回响,震耳欲聋,炮手通过时间隧道又一次回到那个他极不愿意回到的年代。
喂,炮手!将军用望远镜仔细观望着河对面的那个村庄大声喊道。
是将军!我想您是让我炸毁那座红砖白瓦的农舍对吗?
将军惊讶地回过头,对炮手说:你是怎摸猜到我的想法的?你一定是上帝派来拯救我们的!炮手你知道吗?德国法西斯欺我百姓,占我土地,做尽了伤天害理的恶事!我的妻儿就死在他们的魔掌下!说到这将军忍不住伤心的哭了起来。快炮手!那座砖房就是敌军的驻地,快把你对敌人的恨对国人的爱都装进炮弹里给他一炮!
遵命!炮手的脸色又一次苍白,脸上的汗水和泪水又一次滑落,这位伟大的炮手又一次服从了命令,瞄准目标,开炮……
炮手随着时光隧道回到了战争结束后的和平年代满怀对祖国的忠诚、对家人的愧疚。看来炮手始终是个伟大无私的人为了祖国人民他宁肯再一次放弃自己的家,决不自私的奉献了常人所不能奉献的一切!
续写炮手教学反思【篇五】
这一跑炮后,炮手回到村子,到处都成了一片废墟,炮手的心里非常难过,想起了家乡的一切,心里像刀绞一样痛,将军走过来给炮手敬了个军礼,拍拍炮手肩膀说;你真了不起,舍小家,为了大家!战友们也都安慰炮手;别难过了,我们一定会帮你重建家园的。炮手含着热泪感动的说,谢谢你们,谢谢你们!当天下午,炮手回到村子,他踏着沉重的脚步来到家门前,看到了妻子和孩子们,炮手的心情很低落,妻子轻轻的说;我们大家都很想你。战友闷也齐声说;让我们一起重建家园吧!战友们帮炮手一家重新建起了一座红瓦白墙的房子。于是,炮手又有了一个温暖和谐的家。几年后,炮手成了村子的致富能手,他又像村民传授致富经验,乡亲们在他的带领下,也都过上了幸福的生活!
续写炮手教学反思【篇六】
发表一篇我妹妹的作文,请大家指教!
续写《炮手》
战争结束了,全国解放了,炮手兴高采烈地回到了家乡,开始新的生活。
炮手这个人,就像一头老黄牛,做什么事都踏踏实实。炮手决心先在原先的房址上搭个简易的棚屋住下,然后等有了钱再在这盖个大的房子。他在地里种上了庄稼,塘里养了鱼,山坡上养了羊。因为这土地特别肥沃,草木茂盛,羊儿一只只长得又肥又壮。他每天起早贪黑,赶羊上山吃草,下塘给鱼儿喂食。几年过去了,这里已成了一个初具规模的农场,早已不见当初的那间简易棚屋,而是一座砖头做的别墅。
炮手依靠自己辛勤的双手过上了幸福平安的生活,在他的小别墅里快乐的享受生活,安度晚年。
课件精选: 等式的性质教学反思
凡事预则立,不预则废。由于需要展开一个项目,我们必然要将方案给制定好,方案是一种安排全面到位的计划性文书,对于方案的撰写你是否毫无头绪呢?下面是小编精心为您整理的“课件精选: 等式的性质教学反思”,欢迎阅读,希望您能够喜欢并分享!
等式的性质,是在学生掌握了方程的定义,并在小学已经学过了一些等式的基本性质的基础上教学的。本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、猜想入手,激发学习兴趣
猜想是学生感知事物作出步的未经证实的判断,它是学生获取知识过程中的重要环节。因此,在教学中鼓励学生大胆猜想:在一个等式两边同时加或减同一个数,所得结果还会是等式吗?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。
二、操作验证,培养探索能力
在探究等式的性质(关于乘除的)时,安排了两次操作活动。首先让学生把一个等式两边同时乘或除以同一个数,然后思考讨论:所得结果还会是等式吗?引导学生发现所得结果仍然是等式。然后再让学生把等式两边同时乘或除以“0”,结果怎么样?通过两次实践活动,学生亲自参与了等式的性质发现过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
三、发散思维,培养解决问题能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,去说。促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出等式的性质(关于乘除的)。通过“摆写想说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。
